

TENDER DOCUMENTS

MECHANICAL LAB EQUIPMENT

NUTECH/SCM/Mechanical Lab-2019/TD-034

NATIONAL UNIVERSITY OF TECHNOLOGY

TENDER NOTICE

National University of Technology (NUTECH)

NUTECH/SCM/Mechanical Lab-2019/TD-034

Sealed bids are invited from Government / FBR Registered Firms for the procurement of Mechanical laboratory equipment for NUTECH Technology Labs.

- 1. Tender documents containing terms & conditions and detailed specifications of items can be downloaded from NUTECH website "<u>https://nutech.edu.pk/d-p.php</u>" w.e.f **12 Feb 2019.**
- 2. Quotations shall be submitted as per requirement of the tender documents.
- a. Bidders will be required to submit bank draft/PO equal to 5% of quoted value as Bid Bond in favor of National University of Technology (NUTECH).
- 3. Sealed bids with detailed specification should reach on the following address latest by **1030 hours on 04 Mar 2019.** Late submission will not be entertained.
- 4. Bids will be opened at **1100 hours** on **04 Mar 2019** at SCM Office.
- 5. Project is to be completed in 75 days from the date of award of contract.
- 6. <u>Submit Rs 1500/- as Tender fee in favour of NUTECH</u>, **Bank Alfalah Acct:5546-5001002354.** Please attach bank receipt with technical offer. Offers will not be entertained without payment of processing fee.

Deputy Director (Supply Chain Management Office) NATIONAL UNIVERSITY OF TECHNOLOGY (NUTECH) JPROAD, SECI-12, ISLAMABAD Tel: 0092-51-5476768, Ext :178

NATIONAL UNVERSITY OF TECHNOLOGY SUPPLY CHAIN MANAGEMENT OFFICE

INVITATION TO TENDER

Submission Date/Time 04 Mar 2019 at 1030 hours

1. NUTECH desires to procure the list of item(s)/Store(s) as per Annexure-A. Interested bidders are requested to send their bids through courier or deliver at NUTECH under <u>two separate sealed</u> <u>envelopes (placed together in third envelope)</u>, marked clearly, "Technical Offer" and "Commercial <u>Offer</u>", respectively to the undersigned, latest by or before above mentioned due date. If due to any unforeseen circumstances, NUTECH establishment remains closed, then the last date of submission will be extended to next working day.

2. Please also note that Technical Offer should contain Annexes-A & B duly filled in (supported with relevant technical literature /details/ catalogues etc) and receipt of tender processing fee. Commercial Offer will contain Annexure- C and bid bond. Please ensure no space is left blank in the annexes.

- 3. Following must be noted for this IT (Invitation to Tender):
 - a. 2 x copies of technical offer are to be provided.
 - b. Annexes A, B and C must be signed and stamped, Attach only relevant documents.
 - c. Please complete all document as per given format. Do not use any other format or letter head. Offer may be rejected if given format is not followed.
 - d. Validity of offer will be 90 days.
 - e. Delivery period will be 75 days from the date of award of contract..
 - f. Tender(s) must be accompanied with a Bid Bond in agreement of faithful compliance of the conditions of Contract/Purchase Order. This amount will be equivalent to 5% of the total quoted value. In case of non-acceptance of any offer, the Bid Bond will be returned to the bidder by fastest possible means. The Bid Bond amount submitted by the successful bidder will however, be refunded on effective termination of Contract/ Purchase Order. (The Bid Bond will be forfeited in case of default by the bidder from his commitments made through his offer). Submission of Bid Bond is mandatory, otherwise your offer will be rejected.
 - g. 2 years warranty against 5% bank guarantee will be required from the successful bidders

from the date of commissioning.

h. Rates should be quoted on Free Delivery basis at NUTECH Islamabad.

4. We reserve the rights to accept or reject any or all tenders as a whole or in part without assigning any reason whatsoever. The decision in this regard will be firm, final and binding on all bidders.

DD (Supply Chain Management)

SUPPLY CHAIN MANAGEMENT OFFICE

TECHNICAL OFFER

User Reference No Mechanical Lab Eqpt-002 Date: 21-01-2019

Technical Specification

Ser	Part	Nomen/	Description	Count	A/U	Qty		Bidde	ər	Tech Scr	utiny to be
	No	Experiment		ry of		Req	Co	omplia	ance	done l	by user
				Origin			Ye	No	Alter	Accepted	Rejected
							S		nate Offer	Reason o	f Rejection
1.		Vibrations Trainer with DAQ	Vibration trainer with experiments on damping, resonance, dual-mass system and vibration absorption 6 pendulum oscillators 2 bar-type oscillators 1 spring-mass oscillator Electrical imbalance exciter control unit for the imbalance exciter with a digital frequency display and a TTL output for triggering external devices Tune able absorber with a leaf spring adjustable oil damper Electrically operated drum recorder for recording free vibrations Polar chart recorder for determining the amplitude and phase of forced	North Americ a, Europe , Japan South Korea	No s	1					

Annex A

		vibrations					
		Technical data					
		Beam, rigid: LxWxH:					
		700x25x12mm, 1.6kg					
		Beam, elastic: LxWxH:					
		700x25x4mm, 0.6kg					
		Tension-pressure springs					
		0.75N/mm, 1.5N/mm, 3.0N/mm,					
		Imbalance exciter					
		0 to 50Hz, 100cmg					
		Oil damper: 5 to 15Ns/m					
		Absorber leaf spring: -					
		WxH: 20x1.5mm					
		total mass: approx. 1.1kg					
		Tune able: 5 to 50Hz					
		Drum recorder: - 20mm/s, width					
		100mm					
		Polar chart recorder: - Ø 100mm					
		Experimental Capabilities: -					
		Experiments with					
		a. Pendulums					
		 b. Spring-mass system 					
		c. Bar-type oscillator					
		d. Undamped oscillation					
		e. Damped oscillation					
		f. Forced vibration					
		g. Damped and un damped					
		resonance					
		h. Absorber effect in multi-mass					
		oscillators.					
		Rotating bar	North				
		Length: 550mm	Americ				
		Masses: 2x 0.1kg, 2x 0.2kg, 2x	a,				
2	Moment of	0.4kg	Europe	No	1		
∠.	Inertia with DAQ	Solid cylinder	,	S			
		Diameter: 120mm, Mass: 0.9kg	Japan				
		Hollow cylinder	South				
		Outer diameter: 120mm, Inner	Korea				

		diameter: 110mm Mass: 0.9kg Weight for the drive 1N Experimental Capabilities: - a. Investigation of the inertia of various bodies in rotational motion hollow cylinder, solid cylinder or rotating bar with masses as a rotating body.						
3.	Temperature Measuring Apparatus with DAQ	Measuring ranges Resistance temperature detector Pt100: 0 to 200°C Thermocouple type K: 0 to 1200°C Thermistor (NTC): 20 to 55°C Liquid thermometer: -10 to 250°C Bimetallic thermometer Gas pressure thermometer: 0 to 200°C Temperature measuring strips: 29 to 290°C Precision resistors: 10 Ω , 100 Ω , 1000 Ω Psychrometer. 2x temperature: - 0 to 100°C Rel. humidity: - 3 to 96% Flow rate: 502500L/h Flow rate measurement with rotameter. water connections made using quick-release couplings Experimental Capabilities: - a. Function, type of construction and applications of bimetallic dial thermometers b. Function, type of construction and applications of liquid expansion thermometers, resistance thermometers and	North Americ a, Europe , Japan South Korea	No s	1			

		 thermocouples c. Measuring precision, sensitivity and measuring errors of the different thermometers. d. Installation methods, installation errors and response e. Familiarization with the function of the individual temperature measuring instruments. 					
4.	Steam Power Plant with DAQ	Material: - Stainless steel or better. Steam boiler with safety procedures installed Steam output: 200kg/h at 11 bar Max. fuel consumption: 12L/h Heat-up time: 8min Max. pressure: 13bar Super heater power 7kW Axial turbine with speed regulation mechanism. Power: 1.5kW at 3000min-1 Water-cooled condenser. Cooling capacity: 80-100 kW Transfer surface: 2.5m ² Feed Water treatment installed. Speed Control system of the turbine. Vacuum system installed at the outlet of the turbine to assist in the pressure drop in the turbine. Introduction of load variation introduction at alternator. Grid synchronization working mode, all the electrical parameters supplied by the generator to the grid are measured. Computer controlled. Data acquisition system. Experimental Capabilities: -	North Americ a, Europe , Japan South Korea	No s	1		

		 a. Steam power plant and its components b. Start-up, operation and shut down of a steam power plant c. Closed steam-water circuit with feed water treatment d. Calibration of sensors e. Determining the: - > Boiler efficiency > Mechanical/thermal efficiency of the turbine > Condenser efficiency 					
		 Specific fuel consumption of the plant 					
5.	Gas Turbine Jet Engine with DAQ	 Fuel: - kerosene JET-A1, Kerosene and Paraffin. Axial flow Compressor/turbine Thrust Minimum 150 KN. Sound level at 1 m distance: 130 db or less. Temperature sensors to measure: - Inlet air temperature. Inlet air temperature in the compressor. Fuselage temperature. Combustion chamber temperature. Exhaust gases temperature. Speed sensor to measure the speed (rpm) of the shaft of the turbine Force sensor to measure the thrust of the turbine, range: 0 – 300 N minimum. Pressure sensors to measure: - Static/Stagnation Pressure in the intake gases. Static/Stagnation Pressure at each stage of the compressor. Pressure in the combustion 	North Americ a, Europe , Japan South Korea	Nos	1		

		 chamber. Static/Stagnation Pressure at each stage of the turbine. Flow sensors to measure: - Inlet air flow. Exhaust gases flow (Pitot with two pressure sensors). Fuel flow. Computer controlled. Data acquisition system. Experimental Capabilities: - a. Study of a gas turbine. b. Function and operation of a gas turbine as jet engine. c. Determination of fuel consumption. d. Determination of air and fuel ratio. e. Recording the relevant parameters of the turbine. f. Determination of the efficiency of the compressor. g. Determination of the surbine. i. Determination of the gas turbine. i. Determination of the gas turbine. j. Determination of the gas turbine characteristic curves. j. Determination of the compressor at k. Different thrust regimes. 				
		m. Study of the safety systems				
		in the operation of a gas turbine.				
6.	Refrigeration	Open compressor	North			
	Cycle with DAQ	Refrigeration capacity: Min 950W	Americ	1		

		Heater: 1x 1000W	a,					
		Condenser, capacity: Min 1200W	Europe					
		Refrigerant R513A, GWP: 631	,					
		CO ₂ -equivalent: 1.3t	Japan					
		Measuring ranges	South					
		Temperature: 9x -30 to 100°C, 1x 0	Korea					
		to 100°C		No				
		Pressure: 1x -1 to 9bar, 1x -1 to		S				
		24bar, 4x -1 to 15bar						
		Torque: (compressor) 0 to 10Nm						
		Speed: (compressor) 0 to 2500min-						
		1						
		Power consumption: (compressor) 0						
		to 1125W						
		Power: (heater) 0 to 1125W						
		Flow rate: (water) 5 to 70g/s						
		Flow rate: (refrigerant) 0 to 0.5L/min						
		Computer controlled and Data						
		acquisition system.						
		Experimental Capabilities: -						
		a. Cyclic process in the log p-h						
		diagram						
		b. Comparison of the real cyclic						
		process and the ideal cyclic						
		process						
		c. Balances at the evaporator and						
		condenser						
		d. Calculation of the motor power						
		via speed and torque						
		e. Determination of losses						
		f. Calculation of the coefficient of						
		performance						
		g. Operating behavior under load						
		h. Non-steady-state operating						
		behavior.						
	Heat Transfer	This unit provides AC power for all	North	No				
7.	Control Unit	of the modules.	Americ	S	2			
	with DAQ	It also provides instrumentation and	a,					

		control capability for all the	Europe				
		modules.	,				
		Calibration capabilities	Japan				
		Computer controlled	South				
		Data Acquisition System.	Korea				
7a.	Linear Heat Conduction Module with DAQ	 Diagram in the front panel illustrating the process. Brass specimens with different diameters. Stainless steel 25 mm of diameter High precision temperature sensors. Electric Heater. High Precision temperature sensors distributed in the module for measurement. Computer controlled. Data acquisition system. Cables and Accessories. Compatible with the main control unit. Experimental Capabilities: - a. To study the linear heat conductors and insulators. b. To demonstrate the thermal conductivity of using different materials with different 	North Americ a, Europe , Japan South Korea	Nos	1		
		Diagram in the front panel illustrating the process.	North				
		Brass disk of 110 mm of diameter	Americ				
	Radial Heat	and 3 mm of thickness.	a,				
76	Conduction	Electric heater.	Europe	No			
70.	Module with	High Precision temperature sensors	,	S	1		
	DAQ	distributed in the module for	Japan				
		measurement.	South				
		Control through computer and PLC.	Korea				
		Data acquisition system.					

		Cables and Accessories. Compatible with the main control unit.					
		a Determination of the					
		temperature profile					
		b. Determination of the thermal					
		conductivity λ					
7c.	Free and Forced Convection Module with DAQ	 Diagram in the front panel illustrating the process. Different heat exchange geometries Flat plate, Cylinder, Tube bundle Heating element for each exchanger. Variable speed Axial fan. High precision temperature sensors. Cables and Accessories. Computer controlled. Data acquisition system. Compatible with the main control unit. Experimental Capabilities: - a. Free and forced convection b. Calculation of convective heat transfer at different geometries. c. Experimental determination of the Nusselt number. d. Investigation of the relationship between flow 	North Americ a, Europe , Japan South Korea		1		
		formation and heat transfer					
		during experiments.					
		e. Description of transient					
	Extondod	heating process.	North	No			
	Surface Heat	illustrating the process	Americ	ONI S	1		
7d.	Transfer Module	Interchangeable fins, with different	a.	5			
	with DAQ	materials like brass and stainless	Europe				

		 steel. Different cross section shapes: square, circular and hexagonal. High precision temperature sensors. Cables and Accessories. Computer controlled. Data acquisition system. Compatible with the main control unit. Experimental Capabilities: - a. To demonstrate the temperature profiles and heat transfer characteristics for extended surface. b. To demonstrate the cooling rate of different materials like brass and stainless steel and cross sectional shapes c. To demonstrate the heat transfer coefficient of different cross sections like square, circular and hexagonal. 	, Japan South Korea					
7e.	Unsteady State Heat Transfer Module with DAQ	Diagram in the front panel illustrating the process. Shapes of different materials and diameters. Brass sphere and cylinder with different diameters. Stainless steel sphere and cylinder with different diameters. Aluminum rectangular slab. Stainless steel rectangular slab. High precision temperature sensors. Cables and Accessories. Should be compatible with the main heat transfer control unit. Computer controlled Data acquisition system.	North Americ a, Europe , Japan South Korea	No s	1			

		 Experimental Capabilities: - a. Study of the transient heat conduction and convection. b. Study of different temperature/time profiles for different shapes and 						
7f.	Radiation Heat Transfer Module with DAQ	materials. Heating element (ceramic). Lamp 150 W with diffuser. Light accessories: Luxmeter Scale: Resolution: Accuracy: 0 to 1999 lux 1 lux 2000 to 19990 10 lux 20000 to 50000 100 lux 8% Selection of light Day, Tungsten, fluorescence or mercury Sensor Photodiode with filter of adjustment of filter Sample frequency: 0.4 s Work temperature: 0 to 50°C Filters: 3 Grey Neutral Density A153 filters. 1 Grey Neutral Density A153 filters. 1 Grey Neutral Density A152 filter. 3 Filter portholes. Radiometer Elements for studying the radiation and each one contains one temperature sensor Polished aluminum. Anodized aluminum. Brass. 2 Black bodies. Variable slit or aperture to regulate the area of the radiation. High precision temperature sensors. Heating Element. Power measurement (Wattmeter) Radiation measurement.	North Americ a, Europe , Japan South Korea	Nos	1			

		Lux measurement from the luxmeter. Cables and Accessories Computer controlled. Data acquisition system. Compatible with the main control unit. Experimental Capabilities: - a. Measurement of the temperature, radiation, intensity light and the power in the heating element or bulb. b. Verify Lambert's inverse- square law c. Verify Stefan-Boltzmann law d. Verify Kirchhoff's law e. Study transient behavior f. Create power balances					
		g. Produce logarithmic diagrams for evaluations Input Transducers: Carbon track.		No			
8.	Transducers, Instrumentation & Control Teaching Set with DAQ	Wire wound & precision rotary potentiometers. Slide potentiometers. NTC thermistors. Type 'K' thermocouples. I.C. temperature sensor. Photoconductive cell. Photovoltaic cell. Phototransistor. PIN diode. Linear variable differential transformer. Linear variable capacitor. Strain gauge. Air-flow sensor. Air pressure sensor. Slotted opto-sensor. Reflective opto-sensor. Inductive Proximity Sensor. Hall Effect sensor. Precision servo- potentiometer. Tacho-generator. Humidity sensor. Dynamic	North Americ a, Europe , Japan South Korea	S	1		

	microphone. Ultrasonic receiver.				
	Output Devices: Heater. Filament				
	Lamp. DC Motor. Solenoid Air				
	Valve. Ultrasonic transmitter.				
	Buzzer. Loudspeaker. Relay.				
	Solenoid. Counter/timer unit with				
	LED display. Bar graph voltage				
	indicator. Analog 10V center-zero				
	meter. Signal Conditioning Circuits:				
	Buffers, Inverters, Comparator with				
	switchable hysteresis. Amplifiers				
	with gain and offset control. Current				
	amplifier. Summing amplifier.				
	Differential amplifier.				
	Instrumentation amplifiers. AC				
	amplifier. Oscillator 40kHz. Filter				
	40kHz. Low-pass filter with				
	switchable time constant. Precision				
	full-wave rectifier. Sample and hold				
	circuit. Integrator with switchable				
	time constant. Differentiator with				
	switchable time constant. V/F and				
	F/V converters. V/I and I/V				
	converters. Alarm oscillator with				
	switchable latching. Power amplifier.				
	Electronic switch. Internal Power				
	Supplies: -5V, +5V 1A precision				
	supply12V, +12V 1A regulated				
	supply. Pneumatic Supply: Internal				
	Pneumatic pump. D.C. motor,				
	tacho-generator, slotted and				
	reflective opto-sensors for				
	incremental and absolute position,				
	and a 360 degree precision				
	potentiometer with indicator dial for				
	closed-loop position control				
	experiments. System Includes:				
	Trainer. Accessory and Lead Kit.				

		Mains Lead. Curriculum Manual. Student Manual. Instructors Manual. Technical Manual. All Manuals in PDF Format on CDROM. Function Generator. Auto-ranging Digital Millimeter (Qty: 2). Digital Storage Oscilloscope.						
9.	PLCs Trainer Teaching Set	To perform a comprehensive range of programming tasks using a programmable logic controller (PLC). Capable of PLC programming in four different IEC 61131 languages a) Ladder Logic b) Sequential Function Chart c) Function Block d) Structured Text with Electro Mechanical Training e) System demonstrating the positioning and motion processes.	North Americ a, Europe , Japan South Korea	No s	1			
10.	Process Control and Instrumentation Apparatus with DAQ	Material: - Stainless Steel / Acrylic / Metacrylate. All Components should be clearly visible Option to Control through separate PLC / DCS Data Acquisition System. A variable PID/ Controller to see effects of each parameter on the control system 4-20mA, HART, Foundation Fieldbus, Profibus. Must Include the following modules. (a) Level Measurement (b) Flow Measurement (c) Temperature Measurement (d) Pressure Measurement	North Americ a, Europe , Japan South Korea	No s	1			

		Equipment should be supplied as a					
		set of all modules integrated					
		together in the form of a single					
		working unit if possible.					
		Experimental Capabilities of all					
		Modules: -					
		a. Understanding of the					
		➢ the level, flow,					
		temperature and pressure					
		sensors/transmitters					
		working principles.					
		> the level, flow.					
		temperature. Pressure					
		Process Plant isometric					
		drawings.					
		the Instrumentation					
		diagram and wiring of all					
		process plants.					
		b. Operation, calibration and					
		maintenance of level, flow					
		temperature and pressure					
		sensors and instruments					
		c Install instruments according					
		to the instrument mounting					
		drawing					
		d Wire transmitter to the					
		controller					
		e Configure the controller					
		Beam Length: 1000mm		No			
		cross-section: 20x4mm	North	s			
		material: steel	Americ	3			
	Methods to	Weights 7x 1N (banger) 28x 1N					
	determine the		a, Europe				
11.	elastic line	Mossuring ranges	Luiope		1		
	Mohrs Analogy	force: +50N graduation: 1N travel	, Ianan				
	with DAQ	0 to 20mm graduation: 0.01mm	South				
		Experimental Canabilities: -	Korea				
		- Electic lines for statically	Nuica				
		a. Elastic lines for statically					

		 determinate or indeterminate beams under load b. Determination of the elastic line of a beam by the principle of virtual work (calculation) c. Mohr's analogy (area moment method devised by Mohr; graphical representation) d. Application of the principle of superposition e. Determination of the maximum deflection of the beam f. Angle of inclination of the beam g. Comparison between 					
		calculated and measured values for angle of inclination and deflection					
12.	Buckling behavior of Bars with DAQ	Test bars Quantity: 11 Bar lengths: 350 to 700mm or more Materials: aluminum, copper, brass, steel, GFRP Cross-sections: 10x4mm, 25x6mm, 25x10mm Load spindle Force: max. 2000N Stroke: max. 10mm Lateral deflection: max. 20mm Sample holder hole diameter: Ø 20mm Weight for lateral load: max. 20N 1x 5N (hanger), 3x 5N Measuring ranges Force: 0 to 2500N, graduation: 50N	North Americ a, Europe , Japan South Korea	No s	1		

		deflection: 0 to 20mm_graduation:					
		0.01mm					
		Experimental Canabilities					
		Experimental Capabilities					
		a. Investigation of buckling					
		benavior under the influence					
		of					
		different supports and					
		clamps.					
		different bar lengths and					
		cross-sections					
		different materials.					
		b. Testing Euler's theory,					
		buckling on elastic bars.					
		c. Calculation of the expected					
		buckling force with Euler's					
		formula					
		d Measurement of force and					
		deflection					
		3 steel beams with different cross-		No			
		sections		s			
		1 brass and 1 aluminum beam		Ŭ			
		3 articulated beight-adjustable					
		supports with force gauge					
		1 supports with clomp fixing					
		force gauges can be zeroed	North				
		2 dial gauges to record	Amorio				
		s dial gauges to record	Americ				
	Deformation of		a,				
13.	Straight Beams	weights with adjustable hooks	Europe		1		
	with DAQ	anodized aluminum section frame	,				
		nousing the experiment storage	Japan				
		system to nouse the components	South				
		Beam	Korea				
		length: 1000mm					
		Cross-sections: 3x20mm (steel),					
		4x20mm (steel), 6x20mm (Steel,					
		Brass, Aluminum)					
		Frame opening: 1320x480mm					
		Weights 4x 2.5N (hanger), 4x 2.5N,					

		16x 5N					
		Measuring ranges					
		Force: ±50N, graduation: 1N					
		Travel: 0 to 20mm, graduation:					
		0.01mm					
		Experimental Capabilities: -					
		a. Investigation of the deflection					
		for statically determinate and					
		statically indeterminate					
		Straight beams					
		Cantilever beam, Single-span					
		beam, dual- or triple-span					
		beam					
		b. Formulation of the differential					
		equation for the elastic line					
		c. Deflection on a cantilever					
		beam					
		d. Measurement of deflection at					
		the force application point					
		e. Deflection of a dual-span					
		beam on three supports					
		t. Measurement of the support					
		reactions					
		g. Measurement of the					
		h Influence of the material					
		(modulus of elasticity) and					
		the beam cross-section					
		(geometry) on the elastic line					
		i Application of the principle of					
		virtual work on statically					
		determinate and					
		indeterminate beams					
		j. Determination of lines of					
		influence Arithmetically					
	Combined	3 beams: I, L and U profiles	North	No			
14.	Bending and	Clamping flange with angle scale to	Americ	INU C	1		
	Torsion	indicate the angular position of the	а,	3			

Loading with	beam	Europe			
DAQ	Eccentricity of load application point	,			
	adjustable.	Japan			
	2 dial gauges with bracket to record	South			
	the	Korea			
	horizontal and vertical deformation				
	of the beam under load				
	Storage system to house the				
	components				
	Aluminum beam				
	Deformed length: 500mm				
	Eccentricity of load application				
	point: 0 to 25mm				
	Dial gauges 0 to 10mm, Graduation:				
	0.01mm				
	Angle scale 0 to 360°, Graduation:				
	1°				
	Weights 1x 2.5N (hanger), 1x 2.5N,				
	3x 5N				
	Experimental Capabilities: -				
	a. Product moment of inertia				
	and axial second moment of				
	area.				
	D. Demoulli hypothesis.				
	boom (unioxial)				
	with L-profile				
	> with L-profile				
	 with L-profile 				
	d Unsymmetrical bending				
	(complex) on a beam.				
	e. Combined bending and				
	torsion loading by way of				
	eccentric force application.				
	f. Determination of the shear				
	center on a beam with a U-				
	profile.				
	g. Familiarization with shear				

			flow (shear forces in a cross- section) h. Comparison of calculated and measured values Bending bar with 2 strain gauges on the compression side and tension side respectively. Strain gauge configured as full bridge 2-point ball bearing mounting of bar permits purely bending load application Mechanical load application device.						
15.	Gauge measu Appara Strain with D	e factor urement atus of Gauge AQ	 Dial gauge with adjustable dial for direct measurement of deflection Measuring amplifier with 4-digit digital display. Bending bar made of steel: 660x25x12mm Strain gauge application full bridge, 350 Ohm Two strain gauges on the top and underside of the bar respectively. Amplifier measuring range: ±2mV/V Resolution: 1µV/V Zero balancing adjustment range: ±1mV Dial gauge 0 to 20mm Graduation: 0.01mm Experimental Capabilities: - a. Fundamentals of measurement using strain gauges. b. Determination of the gauge factor of strain gauges. 	North Americ a, Europe , Japan South Korea	No s	1			

				No s				
16.	Stress and Strain analysis on a thin walled cylinder with DAQ	Aluminum vessel Length: 400mm Diameter: Ø=75mm Wall thickness: - 2.8mm Internal pressure: - max. 3.5N/mm ² (35bar) 5 strain gauges: half-bridges, 350 Ohm Angular position to the vessel axis: 0°, 30°, 45°, 60°, 90° Gauge factor: 2.00 ±1% Manometer 0 to 40bar accuracy: class 1.0 Experimental Capabilities: - a. Determination of the principal stresses: axial and circumferential stresses by magnitude and direction. > in an open vessel (pipe) > in a closed vessel (boiler) b. Comparison of open/closed vessels c. Determine Poisson's ratio d. Investigation of relations between strains, pressure and stresses in a plane biaxial stress state.	North Americ a, Europe , Japan South Korea		1		F	age 25 of 55

		Torque: -		No				
		10-500Nm.		S				
		Grips: -						
		3 or 4 jaws chucks, key type chuck,						
		keyless type chucks, collet grips, T-						
		slot round platen, custom grips and						
		fixtures						
		Rotations: -						
		1000 times or 360'000° clockwise						
		and counter-clockwise.						
		Control: -						
		Angle or torque closed loop control.						
		Torque Accuracy: -	North					
		In accordance with ISO 7500-1 and	Americ					
	Tanalan Taatina	EN 10002-2, Grade 0.5.	a,					
47	Iorsion lesting	Torsion load Cell	Europe		4			
17.		Data acquisition system.	,		I			
	DAQ	Computer Controlled.	Japan					
		soctions diamotors and materials	South					
		Experimental Canabilities: -	Korea					
		a Shear modulus of elasticity						
		and second polar moment of						
		area						
		b Angle of twist dependent on						
		clamping length.						
		c. Angle of twist dependent on						
		torque						
		d. Influence of rigidity on						
		torsion.						
		e. Calculation of angle of twist.						
		f. Comparison of calculated						
		and measured angle of twist.						

Special Instructions

Description	Bidder			Tech Scrutiny to be done by Use			
	Yes	No	Alternate	Accepted	Rejected	Reasons	
			Offer			Of Rejection	
Environment Conditions:						Rejection	
(a) Temperature range: 05°C to +45°C							
(b) Relative humidity: 0-70% non-condensing							
Warranty period: Two years from the date of commissioning.							
Training Notes: Supplier will provide a set of handouts for							
training on operation and maintenance of the equipment							
Publications Supplier is to provide hard and soft copies (CD)							
of following manuals.							
(a) Operational / Maintenance manual : - Qty 01 with Equipment							
and additional Qty 02 for record purposes and should consist of							
following sections:-							
(1)Equipment Description /Operation:-							
(a)Specifications							
(b)Description							
(c)Operation							
(2)Servicing:-							
(a)Maintenance Schedule							
(b)Adjustment / test							
(c)Removal / Installation procedure							
(d)Tools Used							
(3) Trouble shooting guide							
(4) Cleaning requirements							
(5) Shipping and receiving							
(6) Storage requirements							
(b) IPB (Illustrated Parts Breakdown Manual) should have full							
parts description along with detailed diagrams (exploded view).							
(c) Experimental manuals which must contain the list and							
procedure of the experiments that equipment can perform.							

Charles / Tashnisal Sunnarts			
Spares / Technical Support:			
(a) Supplier to have in-country spares / technical support and			
ensure spares and technical support / assistance for next 10 years			
(b) Comprehensive list of spares required for scheduled			
maintenance of Equipment is to be provided			
(c) Any software provided must have its license			
(d) Software upgrade support must be provided free of cost for 10 x			
years with renewed license at every upgrade			
(e) Supplier must also provide calibration service for at least 5 x			
years after commissioning			
Additional Spare / Replaceable parts:			
(a) Replaceable spare / parts during scheduled inspections			
are to be identified and provided as per requirement along with			
equipment sufficient to cater five years consumption.			
(b) All specialized / standard tools required for inspection /			
repair / servicing must be supplied along with equipment.			
Physical Inspection Criteria: 100% physical inspection of store will			
be carried out before commissioning of the equipment for following			
details:-			
(a) For physical damage, scratches and deformity.			
(b) Accessories /components as per contractual			
specifications.			
(c) Technical Manuals (Operation manual, user guide,			
IPBs).			
(d) Quality certificate and calibration certificate by the OEM			
(e) OEM certificate and verifiable documents by the			
supplier that store has been procured from certified			
source and is factory new and from latest production.			
(f) Brand name and country of origin.			
Commissioning:			
(a) Commissioning by OEM rep at his own cost and risk at			
designated place at NUTECH.			
(b) Any special requirement for installation, operation and			
commissioning must be specified in the offer by the supplier.			
Training: 01 week OEM operational/ maintenance training at			

NUTECH			
Improvement and Safety Measures:			
Any improvement and safety measures suggested by NUTECH			
during commissioning are to be resolved by the supplier /			
manufacturer at no extra cost.			
Liability of Supplier:			
(a) OEM certificate of authorized dealership Supplier is to			
provide original OEM certificate of subject equipment bought			
directly from the manufacturer and being an authorized dealer.			
(b) In case the equipment supplied is not compatible with			
specifications, the supplier will be obliged to call his			
representatives at his own cost for consultation and corrective			
action			
Special Notes:			
(a) Additional requirements for the maintenance of			
equipment (if any) must be intimated by the supplier in			
technical offer.			
(b) Supplier must provide the list of organizations using			
same equipment in Pakistan (if any).			
(c) Equipment must be a standard product of OEM			
available at web address of OEM.			
(d) In case of premature failure of the equipment, OEM has			
to replace / rectify the item free of cost. Required			
transportation charges would be borne by the supplier.			

Firm Name
Signature
Name
Designation

NATIONAL UNIVERSITY OF TECHNOLOGY SUPPLY CHAIN MANAGEMENT OFFICE

TECHNICAL OFFER

Annex B

User Reference No Mechanical Lab Eqpt-002 Date: 21-01-2019

Please fill in the following essential parameters:

- 1. Validity of Offer:_____ Days
- 2. Delivery Period:_____ Days

(Should not be less than 90 days) (After Placement of order)

General

GST No: ______ (Please enclose copy)

NTN/CNIC: _______ (if exempted, please provide valid exemption certificate)

Payment Terms:

- 1. 50 % advance payment (Against valid bank Guarantee)
- 2. 50% Payment after delivery, installation /commissioning, user satisfaction certificate

Details of Payment Recipient

- (1) Name/Title:
- (2) Address:_____

Signature:

Official Seal:

Name: _____

Designation:

NATIONAL UNIVERSITY OF TECHNOLOGY SUPPLY CHAIN MANAGEMENT OFFICE

FINANCIAL OFFER

Annex C

User Reference No Mechanical Lab Eqpt-002 Date: 21-01-2019

Ser	Part No	Nomen/ Experiment	Description	A/U	Qty Req	Unit Price (Rs) (excluding	GST (If applicable)	Custom Duty (Rs) (If applicable)	Total amount (Rs)
1.		Vibrations Trainer with DAQ	Vibration trainer with experiments on damping, resonance, dual-mass system and vibration absorption 6 pendulum oscillators 2 bar-type oscillators 1 spring-mass oscillator Electrical imbalance exciter control unit for the imbalance exciter with a digital frequency display and a TTL output for triggering external devices Tune able absorber with a leaf spring adjustable oil damper Electrically operated drum recorder for recording free vibrations Polar chart recorder for determining the amplitude and	Nos	1	GST)			

		phase of forced vibrations				
		Technical data				
		Beam, rigid: LxWxH:				
		700x25x12mm, 1.6kg				
		Beam, elastic: LxWxH:				
		700x25x4mm, 0.6kg				
		Tension-pressure springs				
		0.75N/mm, 1.5N/mm, 3.0N/mm,				
		Imbalance exciter				
		0 to 50Hz, 100cmg				
		Oil damper: 5 to 15Ns/m				
		Absorber leaf spring: -				
		WxH: 20x1.5mm				
		total mass: approx. 1.1kg				
		Tune able: 5 to 50Hz				
		Drum recorder: - 20mm/s, width				
		100mm				
		Polar chart recorder: - Ø				
		100mm				
		Experimental Capabilities: -				
		Experiments with				
		a) Pendulums				
		 b) Spring-mass system 				
		 c) Bar-type oscillator 				
		 d) Undamped oscillation 				
		 e) Damped oscillation 				
		f) Forced vibration				
		g) Damped and un damped				
		resonance				
		 h) Absorber effect in multi- 				
		mass oscillators.				
		Rotating bar				
		Length: 550mm				
	Moment of	Masses: 2x 0.1kg, 2x 0.2kg, 2x		1		
2.	Inertia with	0.4kg	Nos	'		
	DAQ	Solid cylinder				
		Diameter: 120mm, Mass: 0.9kg				
		Hollow cylinder				

			Outer diameter: 120mm, Inner diameter: 110mm Mass: 0.9kg Weight for the drive 1N Experimental Capabilities: - Investigation of the inertia of various bodies in rotational motion hollow cylinder, solid cylinder or rotating bar with masses as a rotating body				
3.	Tem Meas Appa DAQ	perature suring aratus with	Measuring ranges Resistance temperature detector Pt100: 0 to 200°C Thermocouple type K: 0 to 1200°C Thermistor (NTC): 20 to 55°C Liquid thermometer: -10 to 250°C Bimetallic thermometer Gas pressure thermometer: 0 to 200°C Temperature measuring strips: 29 to 290°C Precision resistors: 10 Ω , 100 Ω , 1000 Ω Psychrometer. 2x temperature: - 0 to 100°C Rel. humidity: - 3 to 96% Flow rate: 502500L/h Flow rate measurement with rotameter. water connections made using quick-release couplings Experimental Capabilities: - a. Function, type of construction and applications of bimetallic dial thermometers	Nos	1		

		 b. Function, type of construction and applications of liquid expansion thermometers, resistance thermometers and thermocouples c. Measuring precision, sensitivity and measuring errors of the different thermometers. d. Installation methods, installation errors and response e. Familiarization with the function of the individual temperature measuring 				
		temperature measuring				
4.	Steam Power Plant with DAQ	Material: - Stainless steel or better. Steam boiler with safety procedures installed Steam output: 200kg/h at 11 bar Max. fuel consumption: 12L/h Heat-up time: 8min Max. pressure: 13bar Super heater power 7kW Axial turbine with speed regulation mechanism. Power: 1.5kW at 3000min-1 Water-cooled condenser. Cooling capacity: 80-100 kW Transfer surface: 2.5m ² Feed Water treatment installed. Speed Control system of the turbine. Vacuum system installed at the outlet of the turbine to assist in	Nos	1		

		 the pressure drop in the turbine. Introduction of load variation introduction at alternator. Grid synchronization working mode, all the electrical parameters supplied by the generator to the grid are measured. Computer controlled. Data acquisition system. Experimental Capabilities: - a. Steam power plant and its components b. Start-up, operation and shut down of a steam power plant c. Closed steam-water circuit with feed water treatment d. Calibration of sensors e. Determining the: - > Boiler efficiency > Mechanical/thermal efficiency of the turbine > Condenser efficiency > Specific fuel consumption of the plant 				
5.	Gas Turbine Jet Engine with DAQ	Fuel: - kerosene JET-A1, Kerosene and Paraffin. Axial flow Compressor/turbine Thrust Minimum 150 KN. Sound level at 1 m distance: 130 db or less. Temperature sensors to measure: - Inlet air temperature. Inlet air temperature in the compressor.	Nos	1		

	Fuselage temperature.			
	Combustion chamber			
	temperature.			
	Exhaust gases temperature.			
	Speed sensor to measure the			
	speed (rpm) of the shaft of the			
	turbine			
	Force sensor to measure the			
	thrust of the turbine, range: 0 -			
	300 N minimum			
	Pressure sensors to measure:			
	Static/Stagnation Prossure in			
	the intake gases			
	Static/Stagnation Pressure at			
	or stage of the compressor			
	Processing in the completion			
	chamber			
	Statio/Stagnation Drassure at			
	Static/Stagnation Fressure at			
	Elow concore to moneuro:			
	Flow Sensors to measure			
	Expanse gases flow (Ditot with			
	Evel flow			
	Fuel now.			
	Deta acquisition system			
	Data acquisition system.			
	Experimental Capabilities			
	a) Study of a gas turbine.			
	b) Function and operation			
	or a gas turbine as jet			
	engine.			
	c) Determination of fuel			
	d) Determination of air and			
	fuel retio			
	iuei ratio.			
	e) Recording the relevant			
	parameters of the			
	turbine.			

		f) Determination of the				
		efficiency of the				
		compressor.				
		g) Determination of the				
		turbine thrust.				
		h) Determination of the				
		efficiency of the gas				
		turbine.				
		i) Determination of the gas				
		turbine characteristic				
		curves.				
		i) Determination of the				
		compression ratio of the				
		compressor at				
		k) Different thrust regimes.				
		I) Determination of the gas				
		turbine specific				
		consumption.				
		m) Study of the safety				
		systems in the operation				
		of a gas turbine.				
		Open compressor	Nos			
		Refrigeration capacity: Min				
		950W				
		Heater: 1x 1000W				
		Condenser, capacity: Min				
		1200W				
		Refrigerant R513A, GWP: 631				
	Pefrigeration	CO ₂ -equivalent: 1.3t				
6.	Cycle with DAO	Measuring ranges		1		
		Temperature: 9x -30 to 100°C,		1		
		1x 0 to 100°C				
		Pressure: 1x -1 to 9bar, 1x -1 to				
		24bar, 4x -1 to 15bar				
		Torque: (compressor) 0 to				
		10Nm				
		Speed: (compressor) 0 to				
		2500min-1				

			 Power consumption: (compressor) 0 to 1125W Power: (heater) 0 to 1125W Flow rate: (water) 5 to 70g/s Flow rate: (refrigerant) 0 to 0.5L/min Computer controlled and Data acquisition system. Experimental Capabilities: - a. Cyclic process in the log p-h diagram b. Comparison of the real cyclic process and the ideal cyclic process c. Balances at the evaporator and condenser 				
			 d. Calculation of the motor power via speed and torque e. Determination of losses f. Calculation of the coefficient of performance g. Operating behavior under load h. Non-steady-state operating behavior. 				
7.		Heat Transfer Control Unit with DAQ	This unit provides AC power for all of the modules. It also provides instrumentation and control capability for all the modules. Calibration capabilities Computer controlled Data Acquisition System.		2		
	7a.	Linear Heat Conduction Module with DAQ	Diagram in the front panel illustrating the process. Brass specimens with different diameters. Stainless steel 25 mm of	Nos	1		

			diameter				
			High precision temperature				
			sensors.				
			Electric Heater.				
			High Precision temperature				
			sensors distributed in the				
			module for measurement				
			Computer controlled				
			Data acquisition system				
			Cables and Accessories				
			Compatible with the main				
			Experimental Canabilities				
			Experimental Capabilities: -				
			a. To study the linear heat				
			conduction of various				
			solid conductors and				
			insulators.				
			b. To demonstrate the				
			thermal conductivity of				
			using different materials				
-			with different diameters.				
			Diagram in the front panel				
			illustrating the process.				
			Brass disk of 110 mm of				
			diameter and 3 mm of				
			thickness.				
			Electric heater.				
		Radial Heat	High Precision temperature				
		Conduction	sensors distributed in the				
	7b.	Module with	module for measurement.	Nos	1		
			Control through computer and				
		DAG	PLC.				
			Data acquisition system.				
			Cables and Accessories.				
			Compatible with the main				
			control unit.				
		E	Experimental Capabilities: -				
			a. Determination of the				

		temperature profile				
		b. Determination of the				
		thermal conductivity λ				
7c.	Free and Forced Convection Module with DAQ	 Inermal conductivity A Diagram in the front panel illustrating the process. Different heat exchange geometries Flat plate, Cylinder, Tube bundle Heating element for each exchanger. Variable speed Axial fan. High precision temperature sensors. Cables and Accessories. Computer controlled. Data acquisition system. Compatible with the main control unit. Experimental Capabilities: - a. Free and forced convection b. Calculation of convective heat transfer at different geometries. c. Experimental determination of the Nusselt number. d. Investigation of the relationship between flow formation and heat transfer during experiments. e. Description of transient heating process. 		1		
	Extended	Diagram in the front panel	Nos	1		
7d.	Surface Heat	illustrating the process.				
	Transfer	Interchangeable fins, with				

	Module with DAQ	 different materials like brass and stainless steel. Different cross section shapes: square, circular and hexagonal. High precision temperature sensors. Cables and Accessories. Computer controlled. Data acquisition system. Compatible with the main control unit. Experimental Capabilities: - a. To demonstrate the temperature profiles and heat transfer characteristics for extended surface. b. To demonstrate the cooling rate of different materials like brass and stainless steel and cross sectional shapes c. To demonstrate the heat transfer coefficient of different cross sections like square, circular and 				
7e.	Unsteady State Heat Transfer Module with DAQ	hexagonal. Diagram in the front panel illustrating the process. Shapes of different materials and diameters. Brass sphere and cylinder with different diameters. Stainless steel sphere and cylinder with different diameters. Aluminum rectangular slab. Stainless steel rectangular slab.	Nos	1		

		 High precision temperature sensors. Cables and Accessories. Should be compatible with the main heat transfer control unit. Computer controlled Data acquisition system. Experimental Capabilities: - a. Study of the transient heat conduction and convection. b. Study of different temperature/time profiles for different shapes and 				
7f.	Radiation Heat Transfer Module with DAQ	materials.Heating element (ceramic).Lamp 150 W with diffuser.Light accessories:LuxmeterScale: Resolution: Accuracy: 0to 1999 lux 1 lux 2000 to 1999010 lux 20000 to 50000 100 lux8% Selection of light Day,Tungsten, fluorescence ormercury Sensor Photodiodewith filter of adjustment of filterSample frequency: 0.4 s Worktemperature: 0 to 50°CFilters:3 Grey Neutral Density A153filters.1 Grey Neutral Density A152filter.3 Filter portholes.RadiometerElements for studying the	Nos	1		

radiation and each one			
contains one temperature			
sensor			
Polished aluminum.			
Anodized aluminum			
Brass			
2 Black bodies			
Variable slit or aperture to			
regulate the area of the			
regulate the area of the			
High provision tomporature			
Serisors.			
Heating Element.			
Power measurement			
(vvattmeter)			
Radiation measurement.			
Lux measurement from the			
luxmeter.			
Cables and Accessories			
Computer controlled.			
Data acquisition system.			
Compatible with the main			
control unit.			
Experimental Capabilities: -			
a. Measurement of the			
temperature, radiation,			
intensity light and the			
power in the heating			
element or bulb.			
b. Verify Lambert's			
inverse-square law			
c. Verify Stefan-			
Boltzmann law			
d. Verify Kirchhoff's law			
e. Study transient			
behavior			
f. Create power balances			
g. Produce logarithmic			

			diagrams for					
			evaluations					
			Input Transducers: Carbon	Nos				
			track. Wire wound & precision					
			rotary potentiometers. Slide					
			potentiometers, NTC					
			thermistors. Type 'K'					
			thermocouples, I.C.					
			temperature sensor.					
			Photoconductive cell.					
			Photovoltaic cell.					
			Phototransistor. PIN diode.					
			Linear variable differential					
			transformer. Linear variable					
			capacitor. Strain gauge. Air-					
			flow sensor. Air pressure					
			sensor. Slotted opto-sensor.					
		Tuonoduoono	Reflective opto-sensor.					
		Iransoucers,	Inductive Proximity Sensor. Hall					
0		Instrumentation	Effect sensor. Precision servo-		1			
ο.		& CONTION	potentiometer. Tacho-		I			
			generator. Humidity sensor.					
			Dynamic microphone.					
			Ultrasonic receiver. Output					
			Devices: Heater. Filament					
			Lamp. DC Motor. Solenoid Air					
			Valve. Ultrasonic transmitter.					
			Buzzer. Loudspeaker. Relay.					
			Solenoid. Counter/timer unit					
			with LED display. Bar graph					
			voltage indicator. Analog 10V					
			center-zero meter. Signal					
			Conditioning Circuits: Buffers.					
			Inverters. Comparator with					
			switchable hysteresis.					
			Amplifiers with gain and offset					
		control. Current amplifier.						
			Summing amplifier. Differential					

		amplifier. Instrumentation				1
		amplifiers. AC amplifier.				
		Oscillator 40kHz. Filter 40kHz.				
		Low-pass filter with switchable				
		time constant. Precision full-				
		wave rectifier. Sample and hold				
		circuit. Integrator with				
		switchable time constant.				
		Differentiator with switchable				
		time constant. V/F and F/V				
		converters. V/I and I/V				
		converters. Alarm oscillator with				
		switchable latching. Power				
		amplifier. Electronic switch.				
		Internal Power Supplies: -5V.				
		+5V 1A precision supply $-12V$				
		+12V 1A regulated supply.				
		Pneumatic Supply: Internal				
		Pneumatic pump D C motor				
		tacho-generator slotted and				
		reflective opto-sensors for				
		incremental and absolute				
		position and a 360 degree				
		precision potentiometer with				
		indicator dial for closed-loop				
		position control experiments				
		System Includes: Trainer				
		Accessory and Lead Kit Mains				
		Lead Curriculum Manual				
		Student Manual Instructors				
		Manual Technical Manual All				
		Manuals in PDF Format on				
		CDROM Function Generator				
		Auto-ranging Digital Millimeter				
		(Otv: 2) Digital Storage				
		Oscilloscope				
	PI Cs Trainer	To perform a comprehensivo				
9.	Tooching Sof	range of programming tasks	Nos	1		
	reaching Sel	range of programming tasks				1

		using a programmable logic controller (PLC). Capable of PLC programming in four different IEC 61131 languages a) Ladder Logic b) Sequential Function Chart c) Function Block d) Structured Text with Electro Mechanical Training System demonstrating the positioning and motion processes.				
10.	Process Control and Instrumentation Apparatus with DAQ	Material: - Stainless Steel / Acrylic / Metacrylate. All Components should be clearly visible Option to Control through separate PLC / DCS Data Acquisition System. A variable PID/ Controller to see effects of each parameter on the control system 4-20mA, HART, Foundation Fieldbus, Profibus. Must Include the following modules. (a) Level Measurement (b) Flow Measurement (c) Temperature Measurement (d) Pressure Measurement Equipment should be supplied as a set of all modules integrated together in the form of a single working unit if possible.	Nos	1		

		Experimental Capabilities of			
		all Modules: -			
		f. Understanding of the			
		➤ the level, flow,			
		temperature and			
		pressure			
		sensors/transmitters			
		working principles.			
		➤ the level, flow,			
		temperature,			
		Pressure Process			
		Plant isometric			
		drawings.			
		the Instrumentation			
		diagram and wiring of			
		all process plants.			
		g. Operation, calibration			
		and maintenance of			
		level, flow, temperature			
		and pressure sensors			
		and instruments.			
		h. Install instruments			
		according to the			
		instrument mounting			
		drawing.			
		i. Wire transmitter to the			
		controller.			
		j. Configure the controller.			
		Beam Length: 1000mm			
		cross-section: 20x4mm			
	Methods to	material: steel			
	determine the	Weights 7x 1N (hanger), 28x			
11		1N, 21x 5N	1		
	Mohrs Analogy	Measuring ranges	•		
	with DAQ	force: ±50N, graduation: 1N,			
		travel: 0 to 20mm, graduation:			
	0	0.01mm			
		Experimental Capabilities: -			

		a. Elastic lines for statically			
		determinate or			
		indeterminate beams			
		under load			
		b. Determination of the			
		elastic line of a beam by			
		the principle of virtual			
		work (calculation)			
		c. Mohr's analogy (area			
		moment method devised			
		by Mohr; graphical			
		representation)			
		d. Application of the			
		principle of superposition			
		e. Determination of the			
		maximum deflection of			
		the beam			
		f. Angle of inclination of			
		the beam			
		g. Comparison between			
		calculated and			
		measured values for			
		angle of inclination and			
		deflection			
		Test bars			
		Quantity: 11			
		Bar lengths: 350 to 700mm or			
		more			
		Materials: aluminum, copper,			
	Buckling	brass, steel, GFRP			
12.	behavior of	Cross-sections: 10x4mm,	1		
	Bars with DAQ	25x6mm, 25x10mm	•		
		Load spindle			
		Force: max. 2000N			
		Stroke: max. 10mm			
		Lateral deflection: max. 20mm			
		Sample holder hole diameter:			
		Ø 20mm			

		 Weight for lateral load: max. 20N 1x 5N (hanger), 3x 5N Measuring ranges Force: 0 to 2500N, graduation: 50N deflection: 0 to 20mm, graduation: 0.01mm Experimental Capabilities: - a. Investigation of buckling behavior under the influence of > different supports and clamps. > different bar lengths and cross-sections > different materials. b. Testing Euler's theory, buckling on elastic bars. c. Calculation of the expected buckling force with Euler's formula d. Measurement of force 				
13.	Deformation of Straight Beams with DAQ	3 steel beams with different cross-sections 1 brass and 1 aluminum beam 3 articulated, height-adjustable supports with force gauge 1 support with clamp fixing force gauges can be zeroed 3 dial gauges to record deformations weights with adjustable hooks anodized aluminum section frame housing the experiment storage system to house the components	Nos	1		

Beem			
length: 1000mm			
Cross-sections: 3x20mm			
(steel), 4x20mm (steel),			
6x20mm (Steel, Brass,			
Aluminum)			
Frame opening: 1320x480mm			
Weights 4x 2.5N (hanger), 4x			
2.5N. 16x 5N			
Measuring ranges			
Force: +50N graduation: 1N			
Travel: 0 to 20mm, graduation:			
Experimental Canabilities			
Experimental Capabilities			
a. Investigation of the			
deflection for statically			
determinate and			
statically indeterminate			
Straight beams			
Cantilever beam, Single-			
span beam, dual- or			
triple-span beam			
b. Formulation of the			
differential equation for			
the elastic line			
c. Deflection on a			
cantilever beam			
d. Measurement of			
deflection at the force			
application point			
e. Deflection of a dual-span			
beam on three supports			
f. Measurement of the			
support reactions			
g Measurement of the			
deformations			
h Influence of the material			
(modulus of electicity)			
(modulus of elasticity)			

		and the beam cross- section (geometry) on the elastic line i. Application of the principle of virtual work on statically determinate and indeterminate beams j. Determination of lines of influence Arithmetically				
14.	Combined Bending and Torsion Loading with DAQ	 3 beams: I, L and U profiles Clamping flange with angle scale to indicate the angular position of the beam Eccentricity of load application point adjustable. 2 dial gauges with bracket to record the horizontal and vertical deformation of the beam under load Storage system to house the components Aluminum beam Deformed length: 500mm Eccentricity of load application point: 0 to 25mm Dial gauges 0 to 10mm, Graduation: 0.01mm Angle scale 0 to 360°, Graduation: 1° Weights 1x 2.5N (hanger), 1x 2.5N , 3x 5N Experimental Capabilities: - a. Product moment of inertia and axial second moment of area. b. Bernoulli hypothesis. 	Nos	1		

		c. Symmetrical bending on					
		a beam (uniaxial)					
		with I-profile					
		with L-profile					
		➢ with U-profile					
		d. Unsymmetrical bending					
		(complex) on a beam.					
		e. Combined bending and					
		torsion loading by way of					
		eccentric force					
		application.					
		f. Determination of the					
		shear center on a beam					
		with a U-profile.					
		g. Familiarization with					
		shear flow (shear forces					
		in a cross-section)					
		h. Comparison of					
		calculated and					
		measured values					
		Bending bar with 2 strain					
		gauges on the compression					
		side and tension side					
		respectively.					
		Strain gauge configured as full					
		bridge					
	Gauge factor	2-point ball bearing mounting of					
	measurement	bar permits purely bending load					
15.	Apparatus of	application	Nos	1			
	Strain Gauge	Mechanical load application					
	with DAQ	device.					
		Dial gauge with adjustable dial					
		for direct measurement of					
		digital display					
		Dending her mede of steel:					
		Bending bar made of steel:					
		660x25x12mm			1		

		Strain gauge application full bridge, 350 Ohm Two strain gauges on the top and underside of the bar respectively. Amplifier measuring range: ±2mV/V Resolution: 1µV/V Zero balancing adjustment range: ±1mV Dial gauge 0 to 20mm Graduation: 0.01mm Experimental Capabilities: - a. Fundamentals of measurement using strain gauges. b. Determination of the gauge factor of strain				
		gauges.				
16.	Stress and Strain analysis on a thin walled cylinder with DAQ	Aluminum vessel Length: 400mm Diameter: Ø=75mm Wall thickness: - 2.8mm Internal pressure: - max. 3.5N/mm ² (35bar) 5 strain gauges: half-bridges, 350 Ohm Angular position to the vessel axis: 0°, 30°, 45°, 60°, 90° Gauge factor: 2.00 ±1% Manometer 0 to 40bar accuracy: class 1.0 Experimental Capabilities: - a. Determination of the principal stresses: axial and circumferential stresses by magnitude and direction.	Nos	1		

		 in an open vessel (pipe) in a closed vessel (boiler) Comparison of open/closed vessels Determine Poisson's ratio Investigation of relations between strains, pressure and stresses in a plane biaxial stress state. 				
17.	Torsion Testing Machine with DAQ	Torque: - 10-500Nm. Grips: - 3 or 4 jaws chucks, key type chuck, keyless type chucks, collet grips, T-slot round platen, custom grips and fixtures Rotations: - 1000 times or 360'000° clockwise and counter- clockwise. Control: - Angle or torque closed loop control. Torque Accuracy: - In accordance with ISO 7500-1 and EN 10002-2, Grade 0.5. Torsion load Cell Data acquisition system. Computer Controlled. Test Specimens of different cross sections, diameters and materials. Experimental Capabilities: - a. Shear modulus of	Nos	1		

 elasticity and second polar moment of area. b. Angle of twist dependent on clamping length. c. Angle of twist dependent on torque d. Influence of rigidity on torsion. e. Calculation of angle of twist. f. Comparison of calculated and management of twist. 			
measured angle of twist.	Total		

Bid Bond Ref___

Total Gross Value_____

*Custom duty is to be quoted separately.

**Bid Bond to be attached with Annex C. Copy of Bid Bond be attached with

Technical offer without showing its value)

Firm Name
Signature
Name
Designation